
1

Introduction to Java Server Pages

2

Introduction
 Java Server Pages allow special tags and Java code to

be embedded in HTML files. These tags and code are
processed by the Web server to dynamically produce a
standard HTML page for the browser.
– Another architecture in the Web-based distributed application

arsenal.
– Produce dynamic Web pages on the server side (like Servlets),

but separate application logic from the appearance of the page.
– The tags allow previously compiled Java code, in the form of

JavaBeans, to be used.
– Allows fast development and testing.
– May also produce XML documents, instead of HTML.

3

Development of JSP

 Java Server Pages were developed as a response to
Microsoft’s Active Server Pages (ASP). The main
differences are that ASP only runs on Microsoft IIS and
Personal Web Servers, and JSP has user-defined tags.

 Development dates: (Note that JSP is built on top of
Servlets)
– Servlet 2.1 Jan. 99
– JSP 1.0 June 99
– Source code released to Apache to develop Tomcat server

November 99
– Servlet 2.2 and JSP 1.1 (J2EE1.2) December 99
– Look for further development of tag library in 00.

4

JSP elements
 A JSP page looks like a standard HTML or XML page with

additional elements processed by the JSP container.
 Typically, these elements create text that is inserted into the

resulting document.
 JSP elements include:

– Scriptlet enclosed in <% and %> markers: a small script in Java to
perform arbitrary functions. Executed in the underlying servlet
context.

– Expression: anything between <%= and %> markers is evaluated by
the JSP engine as a Java expression in the servlet context.

– JSP directive enclosed in <%@ and %> markers—passes
information to the JSP engine (guides “compilation”).

– JSP actions or tags are a set of customizable XML-style tags for
particular actions, e.g. predefine jsp:useBean instantiates a Java
Bean class on the server.

5

Architecture

HTTP request

HTTP response

Web server

JSP page

JSP container
compiles to

a servlet

URL

request

JavaBean
Library

DB

properties,
call methods

HTTP page

response

Browser

6

“Hello User” Servlet, Revisited
import java.io.* ;
import javax.servlet.* ;
import javax.servlet.http.* ;
public class HelloWorld extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
response.setContentType(“text/html”) ;
PrintWriter out = response.getWriter() ;
out.println(“<html><body>”) ;
out.println(“<h1>Hello ” +

request.getParameter(“who”) + “!</h1>”) ;
out.println(“</html></body>”) ;

}
}

7

An Equivalent JSP Page

<html> <body>
<h1>Hello <%= request.getParameter(“who”) %> </h1>
</body> </html>

8

Remarks

 This text may be saved in a file hellouser.jsp in the
dbc/ application directory.

 A suitable form element to front-end this page might be:
<form action=“hellouser.jsp”>

Name: <input type=text name=who size=32> <p>
<input type=submit>

</form>
 The JSP version is much more compact and easier to

understand!
 We can expect this to be generally the case when the

logic behind a dynamic page is relatively simple, and the
bulk of the content is static HTML.

9

Overview of JSP

10

What is a JSP Page?

 According to the JavaServer Pages™ Specification:
– “A JSP page is a text-based document that describes how to

process a request to create a response. The description
intermixes template data with some dynamic actions [. . .].”

 JSP deliberately supports multiple paradigms for
authoring dynamic content.
– Notably, scriptlets, JavaBeans and Tag Libraries.

11

Translating and Executing JSP
Pages

 A JSP page is executed in a JSP container, generally
installed in a Web server.
– Think of a “JSP container” as a JVM with suitable software

installed.

 The underlying semantic model is that of a servlet.

 A typical JSP container will translate the JSP page to a
Java servlet.

 By default translation and compilation of a JSP page is
likely to occur the first time it is accessed.
– With Tomcat 3.1, you can find the generated Java and the class

files in a subdirectory under jakarta-tomcat/work.

12

JSP Features

 Standard directives guiding translation of a JSP page
to a servlet.

 Standard actions in the form of predefined JSP tags.

 Script language declarations, scriptlets, and
expressions for including Java (or in principle other
language) fragments that embed dynamic content.

 A portable tag extension mechanism, for building tag
libraries—effectively extending the JSP language.

13

Fixed Template Data

 These are the parts of a JSP page that are used
verbatim in the response.
– Or in input to JSP actions—see later.

 In simple cases this data will take the form of plain
HTML.

 This text can be written anywhere in the JSP file. It is
copied unchanged, in lexical order, to the output stream
of a response

14

Directives vs Actions
 The special JSP elements include directives and

actions.
 Directives provide “global” information about the

behavior of a JSP page—independent of any specific
request.
– In practice, they guide the process of translation from JSP to

Java.

 An action has some effect in the context of a particular
request.
– e.g. generating some output that depends on form parameters,

or creating an object in the JSP container.

 In other words, an action is a “request-time” operation.
 This boils down to the more familiar distinction between

compile-time and run-time commands.

15

Actions vs Scripting Elements

 Scripting elements (the other kind of element) have a
similar status to action elements—they are “request-
time” operations.

 They are distinguished by syntax:
– Actions follow a strict XML syntax—scripting elements are

largely unconstrained Java “inserts”.

 They are also distinguished at a software engineering
level:
– Scripting elements provide a quick way to achieve an effect, but

depend on knowledge of the underlying servlet model.
– Actions and the associated tag libraries provide a potentially

higher level of abstraction (meta-linguistic abstraction?)

 As with all good libraries, actions should be easy to use,
but they are relatively hard work to implement.

16

JSP Directives

 page directives communicate page-specific information
to the JSP engine, such as buffer or thread information
or specify an error page.

 include directives includes an external document in the
page. These are often company information files or
copyright files, but can also be jsp files.

 taglib directive indicates a library of custom tags that
the page can include.

 language directives specify script language + possible
extensions. The only standard language is Java.

 All are delimited by <%@ and %> markers, e.g.:
<%@ include file=“copyright.html” %>

17

Standard Actions

 Predefined action tags include:
– jsp:useBean - declares the usage of an instance of a JavaBeans

component. If it does not already exist, then the instance is
created and registered in the servlet environment.

– jsp:setProperty - this tag can be used to set all the properties of a
Bean from the request parameter stream with parameters of the
same name, or can be used to set individual properties.

– jsp:getProperty - gets the property of the Bean, converts it to a
String, and puts it into the implicit object “out”.

– jsp:forward - forwards the request to another jsp page or servlet.
– jsp:include - include another JSP page
– jsp:plugin - load into the specified plug-in of the browser

 All have a pure XML syntax, e.g.:
<jsp:useBean id=“clock” class=“calendar.jspCalendar” />

18

Scripting Elements

 There are three kinds of scripting element:
– Scriptlets: arbitrary fragments of Java that are executed in the

request handling method. Syntax is e.g.:
<% out.println(“Your number is ” + Math.random()) ; %>

– Expressions: any Java expression, cast to a String. Evaluated
in the context of the request handling method. Syntax is e.g.:

<%= Math.sqrt(2) %>

– Declarations: any Java declaration that can appear at the
class body level, such as an instance variable or method
declaration. Syntax is e.g.:

<%! Color c = new Color (0, 128, 255) ; %>

19

Scripting Elements

20

The Role of Scripting Elements
 As explained in the previous lecture, scripting elements

represent one of three basic kinds of element in JSP.
– The other two are directives and (standard and customizable)

actions.

 While only one part of the larger picture—and perhaps
lacking the refinement that can be achieved with
customized action elements—scripting elements by
themselves allow one to do essentially all the interesting
things that could be done with servlets.

 Writing a JSP page with scripting elements may be
much less work than writing a servlet. The source is
shorter—it doesn’t need all the boilerplate code—and
compilation is handled automatically.
– In simple cases deploying the JSP page may be no more

trouble than deploying a static HTML page.

21

Is this Related to JavaScript?

 No! There is no relation between the scripting elements
in JavaServer Pages and Netscape’s somewhat older
JavaScript language.

22

Scriptlets

 The most basic kind of scripting element is the scriptlet.
 A scriptlet is an arbitrary fragment of Java code.
 This Java code is just copied to the request handling

method in the servlet code, generated when the JSP
page is translated.

 The placement of the scriplet code in the generated
servlet just reflects the position of the scriplet element in
the JSP source.
– Reasonably enough, it follows the generated code that outputs

the preceding template text, and precedes the generated code
that outputs the following template text.

 The syntax of a scriplet element is:
<% Java code in here %>

23

A JSP Page with a Scriplet
<html><head></head><body>
<% out.println(“Now is” + new java.util.Date()) ; %>
</body></html>

 This is the complete JSP page. We just save this text
in, e.g., “date.jsp”, and install it in a suitable document
directory.

 Don’t forget the semicolon!
– We will see shortly that a scriplet does not always have to be a

self-contained Java statement, but it must yield a legal Java
program when it is inserted in the generated servlet code.

– Mistakes here may lead to odd compiler messages, relating to
the surrounding, automatically generated parts of the servlet
code!

– Since compilation is done on the fly, such messages appear the
first time you visit the page.

24

Viewing the date.jsp Page

 If we visit, e.g. http://sirah:8081/dbc/date.jsp , we see
something like:

25

Predefined Variables

 The example referenced a variable out.
 This was not declared. As one may guess it stands for

the output stream associated with the response.
 out is one of several predefined variables that can be

accessed in JSP scripting elements.
 Others include request, response, session, etc.

26

Meanings of Predefined Variables
 request

The HttpServletRequest object passed to the servlet’s request
handling method.

 response
The HttpServletResponse object passed to the servlet’s request
handling method.

 out
The PrintWriter object associated with response.

 session
The HttpSession object associated with the request.

27

More Predefined Variables
 application

An object of type ServletContext object associated with the
application. Like HTTPSession, this can cache values. Unlike
HTTPSession, the stored values are shared by all servlet
invocations in the current “application” (which typically corresponds
to the servlet context).

 config
The ServetConfig object associated with this page (see, for
example, the discussion of initialization parameters in the lectures
on servlets).

 pageContext
An object of type PageContext . Something like ServletContext,
but values stored here are only shared by invocations of this page.
Thus very similar in behavior to servlet instance variables.

28

“Compound” Scriptlets
 A compound statement in the generated code does not

have to be limited to a single scriptlet element.
 Instead can be assembled from several scriptlet

elements, surrounding blocks of template text.
 Here is an example using a conditional around blocks of

template data (taken from the book by Hall):
<html><head></head><body>
<% if (Math.random() < 0.5) { %>
Have a nice day!
<% } else { %>
Have a lousy day!
<% } %>
</body></html>

29

Expressions

 A JSP expression is very similar to a scriplet, except
that the enclosing Java code is required to be an
expression.

 The expression is evaluated, then converted to a String.
 The string is effectively interpolated into the template

text—wherever the element appears—and sent to the
browser as part of the generated HTML.

 The syntax of a expression element is:
<%= Java expression in here %>

– Distinguished from a scriptlet by the = sign attached to <% .

30

Avoiding out.println()

 We can use an expression to replace the first scriplet in
this lecture, viz:

<html><head></head><body>
<% out.println(“Now is” + new java.util.Date()) ; %>
</body></html>

with:
<html><head></head><body>
Now is <%= new java.util.Date() %>
</body></html>

 In general, expression elements save us writing many
scriplets that just include calls to out.println().

31

Loops and Tables

 Strictly speaking the next example does not introduce
any new features, but it illustrates how to combine some
of the elements we already know.

 It is based on one of our “form” examples. Recall this
form presented a SELECT element for choosing several
pets from a list.

 This JSP page replaces the servlet MultiValue.

32

Showing Pets

<html><head></head><body>
Your pets:<p>
<table border cellspacing=0 cellpadding=5>
<%
String [] pets = request.getParameterValues(“pets”) ;
for (int i = 0 ; i < pets.length ; i++) {
%>

<tr><td> <%= pets [i] %> </td></tr>
<%
}
%>
</table>
</body></html>

33

Declarations

 The last kind of JSP scripting element is the declaration.
 In contrast to expressions, JSP declarations give us a

fundamentally new functionality, which cannot be
achieved with scriptlets alone.

 They allow code to be inserted at the top level of the
Servlet class definition, outside the the body of the
request-handling method.

 The syntax of a declaration element is:
<%! Java declaration in here %>

– Distinguished from a scriptlet by the ! sign attached to <% .

34

The Counter Servlet Revisited

import java.io.* ;
import javax.servlet.* ;
import javax.servlet.http.* ;
public class Counter extends HttpServlet {

int count = 0 ;
public void doGet(HttpServletRequest req,

HttpServletResponse resp)
throws IOException, ServletException {

resp.setContentType(“text/html”) ;
PrintWriter out = resp.getWriter() ;
out.println(“<html><head></head><body>”) ;
out.println(“This servlet instance has been accessed ” +

(count++) + “ times”) ;
out.println(“ </body></html>”) ;

}
}

35

A JSP Counter

<%! int count = 0 ; %>
<html><head></head><body>
This JSP page has been accessed <%= count++ %> times
</body></html>

 As usual, this is the complete JSP page.
 Note that actually it doesn’t matter where the declaration

element appears in the JSP page, since it is not
associated with request handling “thread of control”.

36

Method Declarations

 A JSP declaration element can include a method
declaration, e.g.:

<%!
String myMethod() {

return “madness” ;
}

%>
<html><head></head><body>
There is <%= myMethod() %> in my method.
</body></html>

 For page initialization, use a JSP declaration to
override:

public void jspInit() {}

37

Local Variables

 Use a JSP declaration if you want to declare an
instance variable of a servlet.

 Do not use a JSP declaration if you just want a declare
a variable local to the request handling method.

 Local variables should be declared in ordinary scriplet
elements, e.g.:

<% int loopCount ; %>

38

Directives
 Strictly speaking, JSP directives are separate from

scripting elements, but it is convenient to review them
here.

 The general syntax is:
<%@ name attr1=“value1” attr2=“value2” . . . %>

where name is the name of the directive, and attr1,
attr2, . . . are the names of various attributes associated
with this directive.

 The currently allowed values for name are page, include
and taglib:
– The page directive defines various attributes associated with a

page.
– The include directive allows another file to be textually included.
– The taglib directive imports a tag library.

39

The import attribute

 For now the most important attribute that can be set by
the page directive is the import attribute.

 This simply adds an import directive to the generated
Java code.

 Syntax is, e.g.:
<%@ page import=“java.util.*” %>

40

The Vending Machine Revisited

 We will convert the final version of the Vending Machine
servlet application (two servlets) to JSP.

 This is interesting as a case where there is more “logic”
than template text.

 Nevertheless the JSP version is somewhat shorter, and
arguably more readable.

41

Vending Machine (Preamble)

<%@ page import=“java.util.*” %>

<%!
String [] snacks = {“Chips”, “Popcorn”, “Peanuts”, . . . } ;
%>

<%
Vector selections = (Vector) session.getAttribute(“selections”)

;
if (selections == null) {

selections = new Vector() ;
session.setAttribute(“selections”, selections) ;

}
String selection = request.getParameter(“selection”) ;
if (selection != null)

selections.addElement(selection) ;
%>

42

Vending Machine (Main Body)

<html><head></head><body>
<%
for (int = 0 ; i < snacks.length ; i++)
%>

<form action=vendingmachine.jsp>
<input type=submit name=selection value=<% snacks [i] %>

>
</form>

<%
}
%>
View current selections
</body></html>

43

The Selection Viewing Page

<%@ page import=“java.util.*” %>
<html><head></head><body>
Current selections:<p>
<%
Vector selections = (Vector) session.getAttribute(“selections”)

;
if(selections != null)

for (int j = 0 ; j < selections.size() ; j++)
out.println(selections.get(j) + “
”) ;

%>
Select more
</body></html>

44

Actions and Beans

45

Features of Scripting Elements

 We saw in the last lecture that the scripting elements of
JSP are very powerful.

 They give us essentially all the power of Java and
servlets, but with the code embedded directly in an
HTML page.

 Code fragments and HTML are simply separated by <%,
%> brackets.

 This is both an advantage and a disadvantage:
– It allows a dynamic page to be developed and deployed very

quickly.
– Equally quickly, the JSP source can become difficult to read.

 The same remarks may presumably be applied to
syntactically similar systems (e.g. PHP).

46

Disadvantages of Scriptlets

 An HTML page containing many Java inserts can be
difficult to read and maintain.

 This may be a particular problem when large Web
application development teams are involved—typically
divided into Web site designers and programmers.

 The former may be happy with HTML, and the latter
may be happy with Java. Merging both languages in
the same file potentially forces both teams to be
involved in maintaining the file.

 This is a poor separation of concerns.

47

Actions

 JSP actions are special elements that follow a strict
XML syntax.

 They sit naturally within an HTML document (and
presumably are comfortable to Web designers).

 If actions are used exclusively, there need not be any
Java source embedded in the HTML page.

 However we can still invoke Java code through
JavaBeans.

 The actions we are concerned with in this lecture are
the predefined standard actions.

48

The Standard Actions

 jsp:forward
Forwards the request to another JSP page or servlet.

 jsp:include
Include another JSP page

 jsp:plugin
Include an applet in the page.

 jsp:useBean
Declares usage of a JavaBeans component in the page.

 jsp:setProperty
Sets a property of a bean.

 jsp:getProperty
Gets a property of the Bean.

49

Syntax
 All actions have a strict XML syntax.
 An element either has the form:

< name attr1=“value1” attr2=“value2” . . . />
or the form:

< name attr1=“value1” attr2=“value2” . . . >
JSP body of element

</ name >
 Here name is the name of the element, and attr1, attr2,

. . . are the names of various attributes associated with
this element.

 Differences from HTML:
– Case is significant.
– Attribute values must always be quoted.
– Single-tag elements (elements with no body) are closed by />.

50

The Forward Action

 The jsp:forward action transfers control from the
current JSP page to another location on the server.

 Some possible uses:
– Send the contents of a display page at the end of a page that

mainly does some actions.
– In a conditional scriptlet, forward control to some error page

when a particular situation arises.

 In some of the earlier servlet examples we used
sendRedirect() to transfer to a display page after doing
some actions.

 Using jsp:forward would be more efficient, because it
does not involve the browser in the transfer.

51

Example

 We define the file forward:jsp:
<html><head></head> <body>
<%
String who = request.getParameter(“who”) ;
if (who == null) {
%>

<jsp:forward page=“noparam.html” />
<%
} else {
%>

<h1>Hello <%= “who” %> </h1>
<%
}
%>
</body> </html>

52

Remarks

 If the who parameter is not defined, control is forwarded
to the noparam.html.

 Note the output buffer is cleared before transferring
control.

 Output already generated by the current page is lost.
– The fragment

<html><head></head> <body>
from this page is not delivered to the browser.

 Incidentally, this example illustrates the case that JSP
with heavy use of scriplets can be relatively hard to
read!

53

The jsp:param Element

 Some of the standard actions allow jsp:param elements
in their body. jsp:forward is a case in hand.

 We could replace our static “missing parameter” error
page, noparam.html, with a JSP page that itself takes a
parameter, specifying which parameter was missing
from the original request.

 The jsp:forward element would be replaced with:
<jsp:forward page=“noparam.jsp”>

<jsp:param name=“missing” value=“who” />
</jsp:forward>

54

The Include Action

 The jsp:include action temporarily transfers control
from the current JSP page to another location, and
includes the text generated by the other page in its own
output.

 Syntax is, e.g.:
<jsp:include page=“banner.html” />

 As with jsp:forward, jsp:param elements may be
optionally included in a body.

 This is subtly different from the include directive, which
includes text, before translation of the JSP.

55

The Plug-in Action
 The jsp:plugin tag introduces an element that allows an

applet to be included the generated page, in such a way
that it can be displayed by the Java plug-in in a browser.

 This is a replacement for running the HTML conversion
program over a file with an applet tag.

 Example (from the JSP specification):
<jsp:plugin type=applet code=“Molecule.class”

codebase=“/html”>
<jsp:params>

<jsp:param name=“molecule”
value=“molecules/benzene.mol”/>

</jsp:params>
<jsp:fallback>

<p> unable to start plugin </p>
</jsp:fallback>

</jsp:plugin>

56

JavaBeans

 The other standard actions relate to manipulation of
JavaBeans within a JSP page.

 JavaBeans is a component architecture.
 It dictates a set of rules that software developers must

follow to create reusable components.
 A Bean is an instance of a class that was coded

following these rules.
 JSP interacts with Beans through tags (naturally).

57

Properties

 Any Bean has a set of named properties.
 A property is something like an instance variable.

– Whether it corresponds to an actual instance variable of the
object is an internal implementation choice.

 In any case properties can be read or written using
“getter” and “setter” methods.

 If the property has name name and type Type these
methods have the form:

public Type getName()
public void setName(Type value)

– The property name starts with a lower case letter, which is
capitalized in in the name of the get/set method.

– Some properties may we read-only or write-only, without
associate set or get methods.

58

Trigger Properties

 A Bean can have additional methods besides get and
set methods.

 One advantage of only using the standardized methods
is that various sorts of Bean Container application can
invoke them automatically.

 Writing to, or reading from a trigger property will cause
the Bean to perform some non-trivial activity “behind the
scenes”.
– They could cause an external event, or just some internal

computation.

 If accessing one property causes the values of other
properties to change, these are called linked properties.

59

Constructor

 A JavaBean must also have a no-argument constructor.
This allows a Bean container to instantiate the class
without prior knowledge of the class.
– By using Class.newObject()

60

Elementary Use of Beans in JSP

 The jsp:useBean action tells a page that a particular
Bean is to be used here.

 Its minimal form names a Bean, and specifies its class.
 If there is no Bean of the specified name currently “in

scope” (the meaning of this will be discussed later) the
jsp:useBean method creates a new Bean instance.

 The action can also include text to initialize the bean, if it
is freshly created.

61

The “Use Bean” Element.

 The two basic forms of the element are:
<jsp:useBean id=“bean-name” class=“class-name” />

or
<jsp:useBean id=“bean-name” class=“class-name”>

conditional “initalization” text
</jsp:useBean>

 The name bean-name should be a legal Java variable
name

 Translation of the JSP page causes a variable of this
name, and type class-name, to be declared (in the
equivalent servlet code).

 In the second form, the “conditional text” is only
processed if the Bean is freshly created.

62

Getting and Setting Bean Properties
 The simplest form of the jsp:getProperty and

jsp:setProperty elements are:
<jsp:getProperty name=“bean-name” property=“property”>
<jsp:setProperty name=“bean-name”

property=“property” value=“value”>
 Here name is the Bean name specified in the

jsp:useBean tag; property is the name of a property in
its class.

 The term value can be a literal string. The JSP
container will attempt to convert it to the type of the
argument of the associated set method.
– This will only work if the argument is String or a Java primitive

type.

 The term value can also be a JSP expression element.
– Note this represents an unusual nesting of elements.

63

A Simple Example
 We define the Java Bean class:

import java.util.* ;
class DateBean {

public String getDate() {
return (new Date()).toString() ;

}
}

 This has a single read-only property called date (note
there is no associated instance variable).

 It implicitly has a no-argument constructor: the default
constructor.

 Under Tomcat this class can be placed under the
application WEB-INF/classes/ directory.

64

JSP Page Using the Date Bean

<%@ page import=“date.*” %>

<jsp:useBean id=“now” class=“DateBean”/>

<html><head></head><body>
Now is <jsp:getProperty name=“now” property=“date”/>
</body></html>

65

Initializing Beans from the Request

 If the value attribute is omitted from a jsp:setProperty
element, the JSP container looks for a (form) parameter
with the same name as the property, and sets the
property using the value of that parameter.

 For example, if the a JavaBean class UserBean has a
property userName, this property could be initialized as
follows:

<jsp:useBean id=“user” class=“UserBean”>
<jsp:setProperty name=“user” property=“userName”>

</jsp:useBean>

The value of the userName property will be taken from
the value of a form parameter called userName.

66

Controlling a Bean’s Scope

 The accessibility and lifetime of a Bean created by a
JSP page is controlled by the scope attribute in the
jsp:useBean element.

 The possible values are
page
Current page only. Like a local variable in a request-handling
method.
request
Similar to page, but passed to other pages if control is
forwarded from this page.
session
The current session. Like an attribute of the HttpSession
object.
application
Available to any subsequent request in the same Web
application (servlet context).

67

Session Beans
 The most interesting case is probably session scope.
 By declaring beans with session scope we can avoid

having to deal explicitly with the HttpSession object.
 For example, I could create a Bean class that absorbed

the functionality of the DBSession class from the
student database example in the preceeding lecture set.

 This might be initialized as follows:
<jsp:useBean id=“dbs” class=“DBSessionBean”

scope=“session”>
<jsp:setProperty name=“dbs” property=“userName”>
<jsp:setProperty name=“dbs” property=“password”>
<jsp:setProperty name=“dbs”

property=“connected” value=“true”>
</jsp:useBean>

68

An Example

69

Students Database Revisited

 We will recast the servlet+JDBC implementation of a
student database into a JSP+JDBC version.

 This illustrates practical use of a session bean, and will
shed some light on the advantages and limitations of
JSP standard actions plus JavaBeans.

70

A Database Session Bean

 We will use one Java bean.
 This will be a more evolved version of the DBSession

class in the earlier servlet implementation.
 In our earlier implementation, the DBSession class was

responsible only for opening and closing the connection
with the database.

 The DBSession class exposed a JDBC Statement
object to the servlet code.

 The servlet code itself was responsible for executing
SQL statements through the mediation of this object.

71

Moving Logic into the Bean

 A motivating goal of the JSP actions+Beans paradigm
is to obtain a clean separation between presentational
aspects and computational logic aspects.

 As much of the logic as possible should be isolated in
the Bean, and as much of the HTML generation as
possible should be isolated in the JSP page.
– We will see that the standard actions allow us to make a

reasonable job of this, although not perfect.

 An important change, therefore, will be to shift
generation of SQL queries from the servlet (now JSP)
layer, to the Bean layer.

72

Session Tracking

 In the new paradigm, session tracking can be even
simpler than with servlets.

 In the servlet implementation, recall, we needed code
like:

HttpSession session = request.getSession(true) ;
dbs = (DBSession) session.getAttribute("dbs") ;
if(dbs == null) { // Session new or timed out

dbs = new DBSession() ;
session.setAttribute("dbs", dbs) ;
session.setMaxInactiveInterval(300) ; // 5 minutes.

}

at the beginning of servlets that used session state (in
this case the object dbs).

73

Session Tracking Code in JSP

 An equivalent action in JSP:
<jsp:useBean id=“dbs” class=“DBSessionBean”

scope=“session”>
<% session.setMaxInactiveInterval(300) ; %>

</jsp:useBean>

 Recall the jsp:useBean element first looks for an existing
Bean of the specified name in the specified scope.

 With session scope, it implicitly looks in the HttpSession
object for an attribute of this name.

 If the action doesn’t find an existing Bean, it creates a new
one using the standard, no-argument Bean constructor.

 The JSP statements in the body of the jsp:useBean
element are evaluated only if a new Bean was created.

 Thus this JSP element exactly reproduces the servlet code.

74

The Selection Page
 Apart from establishing a new session if necessary, the

selection page of the application is responsible for
finding all key values from the database table, and
printing them in an HTML select element (in a form).

 Clearly the database query should go in the JavaBean
code, and clearly the general frame of the form should
go in the JSP.

 There is a problem with the generation of the select
element.
– If it goes entirely in the JSP, we have to resort to general

scripting elements for iteration.
– If it goes in the JavaBean, then the JavaBean has to generate at

least some HTML, for the rows of the select element.

 Either way, there is some conflict with the goal of
separating presentation from logic.

75

Selection Form Generation

 The lesser evil here seems to be including a little HTML
generation code in the Bean. The form-generating JSP
for the selection page is:
<html><head></head><body>
<form action=view.jsp>

Select by ID:

<jsp:getProperty name=“dbs” property=“menu”/>
View selected record: <input type=submit value=“View”>

</form>
</body></html>

 The property menu of the Bean is assumed to be a
string containing a suitable HTML select element.

76

The DBSessionBean Class

 The DBSessionBean class starts off in a very similar
way to the old DBSession class.

 Its constructor opens a connection to a suitable
database.

 It will implement HttpSessionBindingListener, and the
valueUnbound() event-dispatching method is
responsible for closing the connection.

 The new class has a read-only property called menu,
which returns a suitable select element. This is defined
by the following method on the Bean class. . .

77

Computing the menu Property

public String getMenu() throws SQLException {
// Extract keys from table
ResultSet rs = stat.executeQuery(“SELECT login FROM ” +

table) ;

// Generate HTML select element
StringBuffer menu = new StringBuffer() ;
menu.append(“<select name=key size=15>”)
while (rs.next())

menu.append(“<option> ” + rs.getString(1)) ;
menu.append(“</select>”) ;
return menu.toString() ;

}

78

Remarks

 This works, but as observed there is a certain loss of
modularity. It seems odd that, e.g., the name of a form
parameter, key, is defined in this layer.

 The getMenu() method can throw an exception.
 This is allowed. There is a mechanism at the JSP level

for handling such errors.

79

Exception Handling in JSP

 The JSP page directive has an optional attribute called
errorPage. In our case we will include the directive:

<%@ page errorPage=“sqlerror.jsp” %>

 If this attribute is defined, its value must be the URL of
another JSP page.

 If an uncaught exception occurs in the servlet, control
will be forwarded to the specified page.

 That page should include the following directive:
<%@ page isError=“true” %>

asserting that it is an error-handling page.
 Scriptlets in such pages have access to an extra

predefined variable called exception.

80

Viewing a Student Entry

 The action attribute in the first form sends the browser
to a JSP page called view.jsp, setting a parameter
called key.

 The trick for persuading the bean to look up the
corresponding entry in the database will be to set a
write-only trigger property, also called key.

 Here we can use the feature of jsp:setProperty that if
a value is not explicitly specified in the tag, the action
looks for it in a request parameter of the same name.

 The element in the JSP page is thus:
<jsp:setProperty name=“dbs” property=“key” %>

81

The DBSessionBean setKey() Method
public void setKey(String key) throws SQLException {

ResultSet rs = stat.executeQuery(
"SELECT * FROM " + table + " " +
"WHERE login=’ " + key + “ ’ ”) ;

if(rs.next()) {
login = rs.getString(1)
lastname = rs.getString(2) ;
firstnames = rs.getString(3) ;
email = rs.getString(4) ;
dept = rs.getString(5) ;

} else
throw new SQLException(”DBSessionBean: Record not

found") ;
this.key = key ;

}

82

Remarks

 This methods sets the 5 private String variables login,
lastname, firstnames, email, dept.

 It also saves the value of key.

83

Displaying the Fields
 The bulk of the page view.jsp is now just an HTML form

with 5 input elements. . .
<form method=post action=update.jsp>
Login ID:

<input type=text size=10 name=login
value=‘<jsp:getproperty name=“dbs” property=“login”/>’

>
. . . 4 more input elements for the other fields . . .
</form>

 For this to work, the Bean class must have get methods
for the 5 fields, login, lastname, firstnames, email,
and dept.

 One slightly odd feature is the nesting of the XML
element within an HTML tag.
– One could put the initial text in the body of a small textarea

element instead.

84

The Update Page

 The last page is the page update.jsp, which is
responsible for updating a row in the table.

 Although it doesn’t generate any output, it illustrates
several features, so we reproduce it in full. . .

85

The Page update.jsp

<%@ page errorPage="sqlerror.jsp" %>

<jsp:useBean id="dbs" class="DBSessionBean”
scope="session">
<jsp:forward page="timeout.html” />

</jsp:useBean>
<jsp:setProperty name="dbs" property="*"/>
<jsp:setProperty name="dbs" property="saved" value="true"/ >
<jsp:forward page="select.jsp"/>

86

Remarks
 In this case, if the jsp:useBean action must create a

new session bean, it presumably means the old session
timed out.
– The body of the action transfers control to an error page.

 If the property name in a jsp:setProperty tag is “*”, the
action looks for all parameters of the request whose
names that correspond to names of Bean properties,
and copies parameter values to Bean properties.
– In this case it will automatically set login, lastname,

firstnames, email, and dept, which are assumed to have set
methods in the Bean class.

 The property saved is a write-only trigger property,
which causes the current field values to be written to the
row with the currently established key.

 Finally the page transfers control back to select.jsp.

87

The DBSessionBean setSaved()
Method

public void setSaved(boolean saved) throws SQLException {
if(saved)

stat.executeUpdate(
"UPDATE " + table + " SET " +
"login=’ " + login + “', " +
"lastname=’ " + lastname + “', " +
"firstnames=’ " + firstnames + “', " +
"email=’ " + email + “', " +
"dept=’ " + dept + “' " +
"WHERE login=’ " + key + “'”

) ;
}

88

Lessons

 The set of standard actions provided by JSP is
minimalist (6 tags), but the example suggests they are
quite flexible, and can implement applications with non-
trivial logic.
– We needed very few Java scripting inserts.

 Session tracking and error handling are particularly
elegant.

 Caveats:
– The lack of iteration in the standard actions means that

sometimes the Bean has to take over HTML generation, e.g. for
tables and menu elements.

– The trigger+linked properties approach works, but seems
slightly contrived for complex operations?

89

A Quick Tour of Tag Libraries

90

Motivations
 In the last two lectures we discussed a particular

approach to authoring dynamic Web content: JSP
standard actions together with JavaBeans.

 We argued that this approach had important advantages
over the scripting approach.
– Free use of Java scripting elements in the body of the HTML

document is confusing.

 At its best, the action-based approach cleanly separates
the presentation aspects of the document from the
computational logic.

 However we also saw that the standard actions are fairly
limited.
– They sometimes, for example, force one to generate fragments of

dynamic HTML inside the Bean. This weakens the desired
separation.

91

Customized Actions

 The solution in JSP 1.1 is allow the creation of
customized actions, or tag libraries.

 A customized action can accept multiple arguments (as
attributes) from the HTML document.
– We no longer have to shoehorn all functionality into the get and

set methods associated with JavaBean properties.

 Even more interesting, a customized action element can
do non-trivial processing on the text in its body.

 In particular, a customized action element can yield
multiple copies of the text in its body.
– Iterative processing!
– It can also choose to ignore the body text: conditonal

processing.

92

Hello World

 Here is a JSP document that uses a tag library:
<%@ taglib uri=“hellolib.tld” prefix=“test” %>
<html><head></head><body>
<test:hello user=“Bryan” />
</body></html>

 When I visit this page, the unexciting response is:

– Of course the excitement is that this was done with a custom
tag, test:hello .

93

The Tag Library Directive

 The jsp:taglib directive informs the JSP container that
this page will be using a library of customized tags.

 The most important attribute of the directive is uri.
 The value of this directive is a URL referencing the Tag

Library Descriptor file (TLD).
 This is an XML document describing the syntax of the

custom elements, and specifying where to find the
associated tag handler classes.

 The prefix attribute just specifies a prefix that will be
appended to the tag names within this document.
– The prefix is not part of the library definition—it is simply a

convenience to avoid name classes between tags used in a
page.

94

The Tag Library Descriptor File

 The TLD file is in XML format.
 It has some preamble describing the XML version and

document type.
 The main body is a taglib element.
 This element in turn contains some global information

about the library, then (most importantly) a series of tag
elements.

 Each tag element defines the syntax and (indirectly) the
semantics of a custom tag:
– Tag name.
– Handler class.
– Attribute names and properties.
– How to deal with the element body, if there is one.

95

TLD File for the “Hello” Example

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib

PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library
1.1//EN"

"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>
<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>mytags</shortname>
<uri></uri>
<info> My first tag library </info>

. . . tag element(s) . . .
</taglib>

96

The TLD tag Element

<tag>
<name>hello</name>
<tagclass>mytags.HelloTag</tagclass>
<info> Says "Hello" to a user. </info>
<attribute>

<name>user</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<bodycontent>EMPTY</bodycontent>

</tag>

97

Remarks
 The preamble defines the XML version and an XML

Document Type Definition file for the document.
 Required elements inside a taglib element are

– the tlibversion element which give a version number for the tag
library, and

– the shortname element used to identify the library.

 A tag element specifies:
– Java classes that define the behavior of the action.
– attribute elements that define the tag’s attributes.
– An attribute may be “required” or optional.
– Its value may be required to be a constant string, or allowed to

be a dynamic, request-time expression (“rtexprval” element).
– The body content of the the defined element may be specified to

be EMPTY.
– It may also be specified to be JSP, or tagdependent.

98

Tag-Handling Classes

 In the example, the tag is handled by a class called
HelloTag which belongs to a package called mytags
– Some JSP containers require that tag-handling classes be

defined in a package.

 A tag handling class must implement the interface
javax.servlet.jsp.tagext.Tag.

 In practice the easiest thing is to extend the class
javax.servlet.jsp.tagext.TagSupport, which provides
default implementation of various methods.

99

Handling Class for the hello Tag
package mytags ;
import javax.servlet.jsp.* ;
import javax.servlet.jsp.tagext.* ;
import java.io.* ;
public class HelloTag extends TagSupport {

public int doStartTag() throws JspException {
try {

JspWriter out = pageContext.getOut() ;
out.print("<h1>Hello " + user + "!</h1>") ;

} catch (IOException e) {
throw new JspTagException(e.getMessage()) ;

}
return SKIP_BODY ;

}
public void setUser(String user) {

this.user = user ;
}
private String user ;

}

100

Remarks

 When a custom tag is encountered in a JSP page, set
methods are invoked on the handler for each of the
attributes.
– In this case there is one attribute: user.

 The doStartTag() method is then invoked.
 In general this can process the attributes, generate

some output, and decide what should be done about the
body of the element, if any.

 In this case there is no body. The method simply
returns the value Tag.SKIP_BODY.
– The other possibility for a simple elements is

Tag.EVAL_BODY_INCLUDE, which tells the JSP container to
process the body in the usual way, outputting the results as it
goes.

101

Actions that Process their Bodies

 More sophisticated custom actions may need to do
some non-trivial, tag-dependent processing on the text
in their bodies.
– Rather than leaving the body to default JSP processing.

 Tag handling classes for such actions should implement
the more complex javax.servlet.jsp.tagext.BodyTag
interface.
– Or extend the associated

javax.servlet.jsp.tagext.BodyTagSupport class.

 Actions handled by these classes can also process their
bodies repeatedly, thus generating iterative output.

102

An Iterative Element
<%@ taglib uri="selectlib.tld" prefix="test" %>
<html><head></head><body>
<table border cellspacing=0 cellpadding=5>
<tr bgcolor=lightblue>

<td>Login id</td> <td>Last name</td> . . . <td>Dept</td>
</tr>
<test:select session="dbs" columns="*" table="it1fall00">

<tr>
<td> <test:field column="1"/> </td>
<td> <test:field column="2"/> </td>
<td> <test:field column="3"/> </td>
<td> <test:field column="4"/> </td>
<td> <test:field column="5"/> </td>

</tr>
</test:select>
</table>
</body></html>

103

The Displayed Page

104

Remarks
 The select action from selectlib.tld executes an SQL

SELECT query on some database.
 The body of the element is processed once for every row

returned by the query.
 In our page, each evaluation of the body generates one

row of an HTML table (this is not part of the library.)
 The field action from the selectlib library returns the

column value with index specified by the column
attribute.

 Now all HTML generation is handled in the JSP page—
the Java code is only responsible for accessing the data
base and managing iteration over the result set.

 A similar library could be used to generate the HTML
menu in the example from the previous lecture.

105

Handling Class for the select Tag

 Apart from attribute setting method, the handling class,
SelectTag, now defines two methods: doStartTag() and
doAfterBody().

 Both of these return an int value:
– for a class implementing BodyTag, possible return values are

SKIP_BODY or EVAL_BODY_TAG.

 As before, if doStartTag() returns SKIP_BODY, the body
is skipped; if it returns EVAL_BODY_TAG, the body is
processed.

 But now a doAfterBody() method, called after the body
is processed, may also return EVAL_BODY_TAG.
– If it does so, the body is processed again. This continues until

doAfterBody() finally returns SKIP_BODY.

106

The SelectTag doStartTag() Method
public int doStartTag() throws JspException {

try {
HttpSession session = pageContext.getSession() ;
DBSession dbs = (DBSession)

session.getAttribute(sessionID) ;
if(dbs == null) {

dbs = new DBSession() ;
session.setAttribute(sessionID, dbs) ;
. . .

}
rs = dbs.stat.executeQuery("SELECT " + columns +

" FROM " + table) ;
if (rs.next())

return EVAL_BODY_TAG ;
else

return SKIP_BODY ;
} catch (. . .) { . . . }

}

107

Remarks
 The method starts with some boilerplate, session-

tracking code.
– We recycle the DBSession from the servlet version of the

student database example.
– The pageContext instance variable allows us to retrieve JSP

predefined variables like session.

 The instance variables sessionID, columns and table
correspond to the tag attributes.
– They are initialized in setSession(), setColumns() and

setTable() methods, not reproduced here.

 The main business is in the executeQuery() method.
Its result is placed in another instance variable, rs.

 The return value of doStartTag() is determined by
rs.next().
– On its first call, this returns true iff the result set is not empty.

108

The SelectTag doAfterBody() Method

public int doAfterBody() throws JspException {
try {

if(rs.next())
return EVAL_BODY_TAG ;

else {
BodyContent body = getBodyContent() ;
body.writeOut(getPreviousOut()) ;
return SKIP_BODY ;

}
} catch (. . .) { . . . }

}

109

Remarks

 If rs.next() is true, this does nothing but return
EVAL_BODY_TAG again—the iteration continues.

 If rs.next() is false, the result set has been exhausted.
 Before returning the value SKIP_BODY, which tells the

JSP container not to process the body again, the
method outputs the accumulated result of (repeatedly)
processing its body.
– Any tag handler that implements BodyTag has accepted this

responsibility.
– Details are beyond the scope of this lecture, but the code given

here should work when the JSP default processing mode is
adequate for the body content.

110

Handling Class for the field Tag

 The handling class, FieldTag, does not need to process
a body.

 It extends TagSupport, and defines the method
doStartTag() (plus a set method for the column
attribute).

 The crucial new feature here is the call to
findAncestorWithClass().

 It returns the tag-handling object for the most closely
enclosing JSP element with specified tag-handling class.

 In our case this will be the tag-handling object for the
surrounding select element.
– The rs field of that object is the ResultSet from which the column

value should be extracted.

111

The FieldTag doStartTag() Method

public int doStartTag() throws JspException {
try {

JspWriter out = pageContext.getOut() ;
SelectTag parent =

(SelectTag) findAncestorWithClass(this, SelectTag.class)
;

out.print(parent.rs.getString(Integer.parseInt(column))) ;
} catch (. . .) { . . . }
return SKIP_BODY ;

}

112

Remarks
 We can reuse exactly the same tag library—consisting of

select and field elements—to build an HTML menu of
keys from the table:
<%@ taglib uri=“selectlib.tld” prefix=“test” %>
. . .
<select name=key size=15>

<test:select session=“dbs” columns=“login”
table=“it1fall00”>

<option> <test:field column=“1” />
</test:select>

</select>

 This degree of reusability reflects an excellent level of
separation between presentation logic and application
logic.
– The price is we have to implement our own library—not in general

an easy thing!

113

Menu Generated Using selectlib.tld

